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4 INEQUALITIES

Objectives
After studying this chapter you should

• be able to manipulate simple inequalities;

• be able to identify regions defined by inequality constraints;

• be able to use arithmetic and geometric means;

• be able to use inequalities in problem solving.

4.0 Introduction
Since the origin of mankind the concept of one quantity being
greater than, equal to or less than, another must have been
present.  Human greed and  'survival of the fittest' imply an
understanding of inequality, and even as long ago as 250 BC,
Archimedes was able to state the inequality

  

3
10
71

< π < 3
10
70

.

Nowadays we tend to take inequalities for granted, but the
concept of inequality is just as fundamental as that of equality.

You certainly meet inequalities throughout life, though often
without too much thought.  For example, in the United Kingdom
the temperature 

  

T°C is usually in the range

  

−15 < T < 30

and it would be extremely cold or hot if the temperature was
outside this range.  In fact, animal life can exist only in the
narrow band of temperature defined by

  

−60 < T < 60.

It will be assumed that you are familiar with a basic
understanding of the use of inequalities  

  

< , ≤ , >  and ≥ ,  and
that you have already met the graphical illustration of simple
inequalities.  You will cover this ground again, but experience
with this using Cartesian coordinates and some competence in
algebraic manipulation would be very helpful.
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Activity 1

Find and prove an inequality relationship for 
  

π .

4.1 Fundamentals
The concept of  'greater than' or 'less than' enables numbers to
be ordered, and represented on, for example, a number line.

The time line opposite gives a time scale for some important
events.

You can also use inequalities for other quantities.  For example,
the speed of a small car will normally lie within the limits

  

−15mph <  speed <  120mph.

Before looking at more inequality relationships the definition
must be clarified.  Writing 

  

x > y simply means that 
  

x − y  is a
positive number: the other inequalities  

  

<,  ≥,  ≤  can be defined
in a similar way.  Using this definition, together with the fact
that the sum, product and quotient of two positive numbers are
all positive, you can prove various inequality relationships.

Example
Show that

(a) if 
  

u > v and x > y then u + x > v + y;

(b) if 
  

x > y and k is a positive number, then kx > ky.

Solution

(a) If 
  

u > v and x > y  then this simply means that 
  

u − v and x − y
are both positive numbers: hence their sum

  

u − v and x − y

is also positive.  But this can be rewritten as

  

u + x( ) − v + y( ).
Since this difference is a positive number you can deduce
that

  

u + x > v + y

as required.

(b) If 
  

x > y then this simply means that 
  

x − y  is a positive

number.  Since 
  

k  is also positive you can deduce that the

product 
  

k x− y( )  is positive.  Therefore
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kx− ky = k x− y( )
is a positive number, which means that  

  

kx > ky as required.

Activity 2

What happens to property (b) when  k is a negative number?

What happens to subtraction of inequalities? For example, if

  

u > v and x > y  then is it always true that 
  

u − v > x − y?

Can you take square roots through an inequality?  i.e.  If 
  

a2 > b2

then is it necessarily true that 
  

a > b ?

Investigate these questions with simple illustrations.

In what follows you will need to solve and interpret inequalities.
These inequalities will usually be linear (that means not
involving powers of  x, etc), but you will first see how to solve
more complex inequalities.  The procedure is illustrated in the
following example.

Example
Find the values of  x which satisfy the inequality

  

x2 + 7 < 3x + 5.

Solution
You can rewrite the inequality as

  

x2 + 7− 3x + 5( ) < 0

  

x2 − 3x + 2 < 0

  

x − 2( ) x −1( ) < 0.

Since the complete expression is required to be negative, this
means that one bracket must be positive and the other negative.

This will be the case when  
  

1< x < 2.
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Exercise 4A

1. Prove that if 
  

x > y > 0,  then 
  

1

y
>

1

x
.

2. Prove that if 
  

a2 > b2 ,  where a and b

are positive numbers, then 
  

a > b.

3. Find the values of 
  

x  for which 
  

8− x ≥ 5x − 4.

4.2 Graphs of inequalities
In the last section it was shown that inequalities can be solved
algebraically; however, it is often more instructive to use a
graphical approach.

Consider the previous example in which you want to find values
of  

  

x  which satisfy

  

x2 + 7 < 3x + 5.

Another approach is to draw the graphs of

  

y1 = x2 + 7,   y2 = 3x + 5

and note when  
  

y1 < y2.  This is illustrated in the graph
opposite.

Between the points of intersection,  A  and  B,  
  

y2 > y1.

Solving the equation  
  

y1 = y2 gives

  

x2 + 7 = 3x + 5

  

⇒
  

x2 − 3x + 2 = 0

  

⇒
  

x − 2( ) x −1( ) = 0

  

⇒
  

x = 1 or 2

giving, as before, the solution  
  

1< x < 2.

You will find a graphical approach particularly helpful when
dealing with inequalities in two variables.

y

11

9

7

13

  

y2 = 3x + 5

  

y1 = x2 + 7

B

A

x1.51.00.50 2.0

4. Find in each case the set of real values of x for
which

(a)
  

3 x −1( ) ≥ x +1

(b) 
  

3
x −1( )

≥ 1
x +1( )

5. Find the set of values of x for which

  

x2 − 5x + 6 ≥ 2.

*
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Example
Find the region which satisfies  

  

2x + y > 1.

Solution
The boundary of the required region is found by solving the
equality

  

2x + y = 1.

This is shown in the diagram opposite

The inequality will be satisfied by all points on one side of the
line.  To identify which side, you can test the point (0, 0) - this
does not satisfy the inequality, so the region to the right of the
line is the solution.  The excluded region is on the shaded side
of the line.

Just as you can solve simultaneous equations, you can tackle
simultaneous inequalities.  For example, suppose you require
values of 

  

x  and 
  

y which satisfy

  

2x + y > 1

and
  

x + 2y > 1.

You have already solved the first inequality, and if you add
on the graph of the second inequality, you obtain the region
as shown in this diagram.

Combining the two inequalities gives the solution region as
shown opposite.
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Example
Find the region which satisfies all of the following inequalities.

  

  x + y > 2

3x + y > 3

x + 3y > 3

Solution
As before, the graph of the three inequalities is first drawn and
the region in which all three are satisfied is noted.

Note that if you had wanted to solve

  

  x + y < 2

3x + y > 3

x + 3y > 3

then the solution would have been the triangular region
completely bounded by the three lines; in general the word
finite  will be used for such bounded regions.

Activity 3

Write down three different linear equations of the form

  

ax+ by = c .

Which three inequalities are satisfied in the finite region formed
by these lines?

Suppose you now have four  linear inequalities in  x  and  y  to
be satisfied.

What regions might they define?

The following example illustrates some of the possibilities.

Example
In each case find the solution region.

(a)
  

x + y > 1,   y − x < 1,   2y − x > 0,   2x + 3y < 6

(b)
  

x + y > 1,   y − x < 1,   2y − x < 0,   2x + 3y > 6

(c)
  

x + y < 1,   y − x > 1,   2y − x < 0,   2x + 3y > 6

  

x + y = 2

  

x + 3y = 3

  

3x + y = 3

y

x

0

y

solution
 region

solution
 region

x

1

2 310

3

2

1
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Solution

First graph  
  

x + y = 1,  y − x = 1,  2y − x = 0 and 2x + 3y = 6, and
then in each case identify the appropriate region.

There is no region which satisfies  (c).

How many finite regions are formed by the intersection of four
lines?

Exercise 4B
1. Solve graphically the inequalities

(a)
  

2− 3x( ) 1+ x( ) ≤ 0

(b)
  

x2 ≤ 2x + 8.

2. Solve

  

y ≥ 0, x + y ≤ 2 and y− 2x < 2.

3. Find the solution set for

  

x + y < 1 and 3x + 2y < 6.

4.3 Classical inequalities
You are probably familiar with the arithmetic mean (often called
the average) of a set of positive  numbers.  The arithmetic
mean is defined for positive numbers  

  

x1,  x2,  ...,  xn by

  

A = x1 + x2 +  ...  + xn

n

So, for example, if  
  

x1 = 5,  x2 = 6,  x3 = 10, then

  

A = 5+ 6 +10( )
3

 =  7.

There are many other ways of defining a mean; for example, the
geometric mean is defined as

  

G =  x1x2 ...  xn( )1
n

2

3

1

4. Find the region which satisfies

  

  x + y ≥ 2

x + 4y ≤ 4

    y > −1.

5. Is the region satisfying

  

x + y > 1, 3x + 2y < 12, y− x < 2, 2y− x > 1

finite?

  

y − x = 1

  

2y − x = 0

solution

  

x + y = 1

1 3 x

y

solution
(b)

(a)

20

  

2x + 3y = 6

  

2x + 3y = 6
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For the previous example,

  

G = 5× 6 ×10( )1
3 = 300( )1

3 ≈ 6.69

The harmonic mean is defined by

  

1
H

 = 1
n

1
x1

+ 1
x2

+  ...  + 1
xn







So, again with  
  

x1 = 5,  x2 = 6,  and x3 = 10,

  

1
H

= 1
3

1
5

+ 1
6

+ 1
10





 = 1

3
× 7

15

giving

  

H = 45
7

≈ 6.43

Activity 4

For varying positive numbers  
  

x1,  x2,  x3,   find the arithmetic,
geometric and harmonic means.  What inequality can you
conjecture which relates to these three means?

If you have tried a variety of data in Activity 4, you will have
realised that the geometric and harmonic means give less
emphasis to more extreme numbers.  For example, given the
numbers          1, 5 and  9,

  

A = 5,  G= 3.56,  H= 2.29,

whereas for numbers 1, 5  and  102,

  

A = 36,  G= 7.99,  H= 2.48.

Whilst the arithmetic mean has changed from 5 to 36, the
geometric mean has only doubled, and  the harmonic mean has
hardly changed at all!

In most calculations for mean values the arithmetic mean is
used, but not always.

One criterion which any mean must satisfy is that, when all the

numbers are equal, i.e. when   
  

x1 = x2 =  ...  = xn = a( )  say, then
the mean must equal a.
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For example,

  

A =
a + a +  ...  +a

n
= na

n
= a

  

G = a a a  ...  a( )1
n = an( )1

n = a.

Similarly, 
  

H = a when all the numbers are equal.

Activity 5

Define a new mean of  n  positive numbers   
  

x1,  x2,  ...,  xn and
investigate its properties.

In Activity 4 you might have realised that

  

A ≥ G ≥ H

(equality only occurring when all the numbers are equal).   The
first inequality will be proved for any two positive numbers,

  

x1 and  x2.

Given the inequality

  

x1 − x2( )2 ≥ 0

then  equality can occur only when  
  

x1 = x2 .

This inequality can be rewritten as

  

x1
2 − 2x1x2 + x2

2 ≥ 0

or
  

x1
2 + 2x1x2 + x2

2 ≥ 4x1x2  (adding  
  

4x1x2 to each side)

giving
  

x1 + x2( )2

4
≥ x1x2.

Taking the positive square root of both sides, which was justified
in Question 2 of Exercise 4A,

  

x1 + x2

2
≥ x1x2

i.e.
  

A ≥  G

and equality only occurs when  
  

x1 = x2.

You will see how this result can be used in geometrical  problems.
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bA

a

Example
Show that of all rectangles having a given perimeter, the square
encloses the greatest area.

Solution
For a rectangle of sides a and  b, the perimeter, L is given by

  

L = 2 a+ b( ) ,

and the area, A, by

  

A = ab.

Using the result above, with 
  

x1 replaced by a and 
  

x2  replaced by b,

  

L
4

≥ A

or
  

A ≤ L2

16

where equality occurs only when  
  

a = b.  Since in this example the
perimeter is fixed, the right hand side of this last inequality is
constant: also equality holds if and only if 

  

a = b.   Therefore you can

deduce that the maximum value of A is 
  

L2

16
 and that it is only

obtained for the square.

In fact, the inequalities

  

A ≥ G ≥ H

hold for any set of positive numbers, 
  

x1,  x2,  ...,  xn,  but the result is
not easy to prove, and requires, for example, the use of a
mathematical process called  induction.

The result in the example above illustrates what is called an
isoperimetric inequality; you will see more of these in the next
section.

Exercise 4C
1. Find the arithmetic, geometric and harmonic means

for the following sets of numbers, and check that the
inequality  

  

A ≥ G ≥ H  holds in each case.

(a) 1, 2, 3, 4;

(b)
  

0.1, 2,  3, 4.9;

(c)
  

0.1, 2, 3, 100;

(d)
  

0.001, 2, 3, 1000;

(e)
  

0.001, 0.002, 1000, 2000.

2. Prove that 
  

G ≥ H  for any two
positive numbers 

  

x1 and x2 .
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*3. By taking functions 
  

1
x2  and x2  as numbers in the

arithmetic/geometric mean inequality, find the
least value of

  

y = 1+ x4

x2 .

*4. Show that the surface area, S,
of a closed cylinder of
volume V can be written as

  

S = 2πr 2 + 2V
r

.

4.4 Isoperimetric inequalities
In the last section there was an example of an isoperimetric
inequality.  You will look at a more general result (first known to
the Greeks in about 2000 BC) and at some further special cases.

According to legend, Princess Dido was fleeing from the tyranny
of her brother and, with her followers, set sail from Greece across
the sea.  Having arrived at Carthage, she managed to obtain a
grudging concession from the local native chief to the effect that

'she could have as much land as could be
 encompassed by an ox's skin.'

Of course, the natives expected her to kill the biggest ox she
could find and use its skin to claim her land - but her followers
were very astute, advising her to cut the skin to make as many
thin strands as possible and to join them together to form one long
length to mark the perimeter of her land.  Her only problem then
was in deciding what shape this perimeter should be to enclose
the maximum area.

What do you think is the best shape?

In mathematical terms, the search is for the shape which
maximises the area A inside a given perimeter of length L.

Example
For a given perimeter length, say 12  cm, find the area enclosed
by

(a) a square;

(b) a circle;

(c) an equilateral triangle.

Writing

  

S= 2π r 2 + 2V
2πr







and using the arithmetic and geometric means
inequality for the three numbers

  

r 2 , 
V

2πr
, 

V
2πr

show that

  

S
6π

≥ V 2

4π 2







1
3

.

When does equality occur? What relationship
does this give between h and r?

<

<< <

h

r

area A

perimeter
length  L
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Solution

(a) For  
  

L = 12, each side is of length 3 cm

and
  

A =  32  =  9 cm2.

(b) For  
  

L = 12, assume the radius is a, giving

  

12 =  2πa ⇒  a =  
6
π

and
  

A =  πa2 =  π 
6

π






2

 =  
36

π
 ≈  11.46 cm2

(c) Again,  for  
  

L = 12, each side is of length 4 cm, and

  

A =  
1

2
× 4 × 4sin 60 =  4 3 ≈ 6.93 cm2.

So, for the particular problem of a perimeter length of 12 cm, of
the three shapes chosen the circle gives the largest area - but can
there be another shape which gives a larger one?  You can make
some progress by looking more carefully at the circle in the
general case of perimeter  L.

Now
  

L =  2πa

and
  

A =  πa2 =  π L

2π






2

 =  
L2

4π
 

So, for any circle

  

4π A

L2
 =  1.

The Isoperimetric Quotient Number  (I.Q.) of any closed
curve is defined as

  

I.  Q.  =  
4π A

L2

For the circle, you see that I.Q. = 1.  In the basic problem you
have been trying to find the shape which gives a maximum value
to A for a fixed value of  L.  In terms of the  I.Q. number, you
want to find the shape which gives the maximum value to the
I.Q. number.  But, for a circle, the value of the I.Q. number is 1,
so  if the optimum shape is a circle, then the inequality

  

I.Q.  ≤  1

holds for all plane shapes, and equality occurs only for the
circle.

Note that, since the I.Q. is the ratio of an area to the square of a
length, it is non-dimensional,  i.e. a number requiring no units.

< <a

3

3

44

  

60°

>a

L

<
A

2 2
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Example
Find the  I.Q. number for a square of side  a.

Solution

  

L =  4a,  A =  a2,

and
  

I.Q.  =  4π × a2

4a( )2  =  
π
4

 ≈  0.785.

Activity 6

Find  I.Q. numbers of various shapes and check that, in each
case, the inequality  

  

I.Q.  ≤  1 holds.

A complete proof is beyond the scope of this present work ( and,
in fact, involves high level mathematics).  It is surprising that
such a simple result, known to the Greeks, could not be proved
until the late 19th Century, and even then required sophisticated
mathematics.  You can, though, verify the result for all regular
polygons as will be shown.

Consider a regular polygon of  n sides.  The angle subtended by
each side at the centre is

 
  

360
n

degrees  or   
  

2π
n

radians.

You will work in radians in what follows.  If each side is of
length  a, the area of each triangle is given by

  

1
2

× a × a
2

× 1

tan
π
n







= a2

4 tan
π
n







The total area,  

  

A =  
na2

4 tan
π
n







,   and   
  

L =  na,

so

  

I.Q.  =  4π ×  
na2

4 tan
π
n























× 1

na( )2

i.e.

  

I.Q.  =  

π
n







tan
π
n







  

↑

  

2π
n







a

  

←
  

π
n

a

a
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Activity 7

Use your calculator to find the limit of   
  

x
tanx





  as  x → 0 .

Now you can write I.Q.
  

= x
tanx

 where 
  

x = π
n

.

As 
  

n → ∞, the polygon becomes, in the limit, a circle, and you have
seen that I.Q.

  

= 1, as expected.  Note that, for all values of the

positive integer n except 
  

n = 1, 
  

tan
π
n





 > π

n




  - use your calculator

to check some of the values.  Hence, for any regular polygon

  

I.Q.  ≤  1,

and you can see that the larger  n becomes, the closer the I.Q.
comes to 1, fitting in with the fact that the I.Q. for a circle is 1.

Finally, it should be noted that Princess Dido did not live happily
ever after.  Having been outwitted by her, the native leader
promptly fell in love with her.  As she did not reciprocate his
feelings, she burnt herself on a funeral pyre in order to escape a
fate worse than death!

Exercise 4D
1. For a given perimeter length of 12 cm, find the

total area enclosed by the rectangle with sides

(a) 3 cm and 3 cm

(b) 2 cm and 4 cm

(c) 1 cm and 5 cm

2. Find the  I.Q. numbers for the following shapes:

(a) equilateral triangle;

(b) regular hexagon;

(c) rectangle with sides in the
ratio  1 : 2.

3. For a rectangle with sides in the ratio

  

1 : k k ≤ 1( )
find an expression for the  I.Q. number.  What
value of k gives:

(a) maximum value

(b) minimum value

for the  I.Q. number?

4. What is the volume, V, of the sphere which is

enclosed by a surface area of 
  

12 cm2 ?

5. What is the volume, V, of the cube which is

enclosed by a surface area of 
  

12 cm2 ?

6. For a given surface area, S, what closed three-
dimensional shape do you think gives a
maximum volume?
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4.5 Miscellaneous Exercises
1. Obtain the sets of values of x  for which

(a)
  

2x > 1
x

(b)
  

1
x +1

> x
3+ x

.

2. Find the range of values of x for which

  

4x2 −12x + 5 < 0.

3. Find the ranges of values of x such that

  

x > 2
x −1

.

4. Find the set of values of x for which

  

x x+ 2( )
x − 3

< x +1.

5. Find the solution set of the pair of inequalities

  

x + y < 1

2x + 5y < 10.

6. Is the region defined by

  

2x − 3y ≤ 6

x + y ≤ 4

finite?

7. Find the region satisfied by

  

x + y ≤ 4

2x − 3y ≤ 6

3x − y ≥ −3

x ≤ 2.

8. Prove that 
  

A ≥ H  for any two positive numbers.
When does equality occur?

9. Find the I.Q. number for the shape illustrated
below, where k is a positive constant.

What value of k gives a maximum I.Q. value?

10. Find the I.Q. number for a variety of triangles,
including an equilateral triangle.  What do you
deduce about the I.Q. numbers for triangles?

*11. For three-dimensional closed shapes, the
isosurface area quotient number is defined as

  

I.Q. =  
6 π V

S
3
2

where V is the volume enclosed by a total
surface area S.  Find the I.Q. for a variety of
three-dimensional shapes.  Can you find an
inequality satisfied by all closed shapes in three
dimensions?

ka

a

v  
a
2
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