National Certificate of Educational Achievement TAUMATA MĀTAURANGA A A-MOTU KUA TAEA

Exemplar for Internal Assessment Resource Mathematics Level 3

Resource title: Roger's Rabbits

This exemplar supports assessment against:
Achievement Standard 91587
Apply systems of simultaneous equations in solving problems

Student and grade boundary specific exemplar
The material has been gathered from student material specific to an A or B assessment resource.
$\begin{array}{ll}\text { Date version published by } & \text { December 2012 } \\ \text { Ministry of Education } & \text { To support internal assessment from } 2013\end{array}$

The task asks students to use the constraints provided to recommend the amount of each type of food that Roger should feed his rabbits to meet their exact daily requirements, and to investigate what quantity of vitamin A would encourage Roger to buy more Zany food.

	Grade Boundary: Low Excellence
1.	For Excellence the student is required to apply systems of simultaneous equations, using extended abstract thinking, in solving problems. This involves devising a strategy to investigate or solve a problem, developing a chain of logical reasoning, forming a generalisation and using correct mathematical statements or communicating mathematical insight. The student has shown evidence of extended and abstract thinking by finding the amount of each type of food to meet the daily requirements (1), and by finding a general solution which satisfies the situation with 6 $\mu \mathrm{g}$ of Vitamin A in the Zany product (2). The student has identified an appropriate range of values for the amount Zany for this new situation and has given one possible solution (3). For a more secure Excellence the student would need to accurately communicate their thinking relating to how 6 g of vitamin A in the Zany food relates to the general solution.

$x=$ No. if grams of Pena
$y=$ No, of grams of yum
$z=$ No. of grams of Zany
The amount of vitamins if each type of foeel can be represented by the equations

$$
\begin{array}{ll}
2 x+4 y+5 z=1000 & (\text { Vil A) } \\
3 x+7 y+10 z=1600 & (\text { vi c) } \\
5 x+9 y+14 z=2400 & (\text { vil E) }
\end{array}
$$

Solving these gives $x=300, y=100, z=0$
Se to meet the daily regullement Roger should feed them zee grams of Pena, 100 grans of yum and ne Zany
If the amount of Vitamin A in zary changes to 6 micrograms then

$$
\begin{align*}
& 2 x+4 y+6 z=1000 \tag{1}\\
& 3 x+7 y+10 z=1600 \tag{2}\\
& 5 x+9 y+14 z=2400 \tag{3}
\end{align*}
$$

Solving these gives ne Solution.
These equations are inconsistent.
Solving (1) $\times 3-(2) \times 2$ gives

$$
-2 y-2 z=-200
$$

(1) $\times 5-(3) \times 2$ gives

$$
2 y+2 z=200
$$

(1) $\times 7-(2) \times 4$ gives $2 x+2 z=600$

$$
x+z=300
$$

So Solution is $300-z, 100-z, z$
if $z>100$ the amount of Yum would be negative se $0 \leqslant z \leqslant 100$
Se if $z=20$ grams, $x=280$ grams and $y=80$ grams ie one solution is 280 grams of Dene, 280 grams of yum and 20 grams of Zany

If the cimannt of $v i t a m i n ~ A$ in Zany is k microgioums
Hen

$$
\begin{aligned}
& 2 x+4 y+k z=1000 \\
& 3 x+7 y+10 z=1600 \\
& 5 x+9 y+14 z=2400
\end{aligned}
$$

Using the Calculator I get 0 micrograms of Zany for loots of values I tried for k except when $k=6$ micreg rams when There is ne unique Solution.
Maybe this is because (3) $=4_{+} *$ (1) -(2) on the previcuis page.

	Grade Boundary: High Merit
2.	For Merit the student is required to apply systems of simultaneous equations, using relational thinking, in solving problems. This involves selecting and carrying out a logical sequence of steps, connecting different concepts or representations, demonstrating understanding of concepts, and relating findings to a context or communicating thinking using appropriate mathematical statements. The student has shown evidence of relational thinking by finding the amount of each type of food required to meet the daily requirements (1), and indicating that increasing the amount of vitamin A in Zany food does not provide a unique solution (2). The student has identified a possible solution for the amount of each type of food if Zany uses $6 \mu g$ of vitamin A (3). To be awarded Excellence the student would need to generalise the amount of each type of food required if Zany contains 6 $\mu \mathrm{g}$ of vitamin A.

The anount on eacn vitanun kopers wabiets need to meet theer laveg vituman requirenvits, and the muniser of grams of eacil vitiviun in the tools xena, yur and \% any ann be represented by the fellourng equations where x represents x ena y represents curr. and \hbar represents zary.

$$
\begin{aligned}
& 2 x+4 y+5 z=1000 \\
& 3 x+7 y+10 x=1600 \\
& 5 x+7 y+14 z=2400
\end{aligned}
$$

\rightarrow soeved simulianeously
$x=300$ xena
$y=100 \quad y \mathrm{~lm}$
$x=0 \quad$ Kany.
Thes coloulations leaa to thie conclusion that in ander ton his vabbits to ineet theer exact lavey vitamin requirements, Roger shouid teed them 300 grams of xena, 100 grains of yun and O grams of kaing each day. Therefone the rabbits daily vitamen requirements can be met by cans emung the aronementioned ancunts of Xena and Yum alone, hany is not needed.
if kany increases the mmount is vitamen A in their food from 5 murograms to o merograms, this would change the umber ot grams of wach tiod Roger strould reed his rabbits in onder ton them to meet their exact dacly vitamen requir en. - ints.

$$
\begin{align*}
& 2 x+4 y+6 z=1000 \tag{1}\\
& 3 x+7 y+10 z=1600 \\
& 5 x+4 y+14 z=24 \pi 0 \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \text { i) } \times 15 \quad 3 x+6 y+9 x=1500 \tag{4}\\
& \text { (2) (4) } y+z=100 \\
& \text { (1) } \times 2.5 \tag{3}
\end{align*}
$$

There are many jotutrous to the number "? gNaws of eaci foo Roper smailid now teed has rabbits in order to meet their taiiej vitamin requirimeits. There is no one real solution.

Io amount of vitimu: A would encourage Roger to bulg inane Lang trod secure his rabbits daily vitamin intake 13 dreadiy met by kana and Yum, ias he does mot wed unis Rainy.
ane example or a possible solution of the mumiser of grams 0^{2} each fox roger strake vow teed d is ranket is
$x=250$ grams rena
$y=50$ grams yum
w = 50 grams Many.

	Grade Boundary: Low Merit
3.	For Merit the student is required to apply systems of simultaneous equations, using relational thinking, in solving problems. This involves selecting and carrying out a logical sequence of steps, connecting different concepts or representations, demonstrating understanding of concepts, and relating findings to a context or communicating thinking using appropriate mathematical statements. The student has shown evidence of relational thinking by finding the amount of each type of food required to meet the daily requirements (1), and by identifying that the change to 6 $\mu \mathrm{g}$ of vitamin in Zany food produces no unique solutions (2). For a more secure Merit the student would need to provide a possible solution which meets the new situation and accurately communicate what was being calculated at each step.

vitamin A $\quad 2 x+4 y+5 z=1000$
Vitamin c $\quad 3 x+7 y+10 z=1600$
Vitamin $E \quad 5 x+9 y+14 z=2400$

$$
\begin{aligned}
& x=300 \\
& y=100 \\
& z=0
\end{aligned}
$$

If Roger wants his rabbits dally vitamin intake to be 1000 mg of vitamin A,
1600 g of vitamin C and 2400 g of vitamin E, in order to meet these exact daily vitamin requirements Roger should feed his rabbits 300 grams of Xena feed and 100 grams of yum feed.
Vitamin A $2 x+4 y+62=1000$
vitamin $C \quad 3 x+7 y+10 z=1600$
Vitamin $E \quad 5 x+9 y+142=2400$
These equations are inconsistant and there is no exact solutions.

	Grade Boundary: High Achieved
4.	For Achieved the student is required to apply systems of simultaneous equations in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations.
The student has shown evidence of applying systems of simultaneous equations by forming the equations (1) and using them to find a solution, and making an appropriate recommendation regarding the amount of each type of food required (2). To be awarded Merit the student would need to consider how the amount of each type of food would change if the number of micrograms of vitamin A in the Zany food changes to 6.	

$$
\begin{aligned}
& \frac{\text { rena yum zany }}{2 A+L C+5 E=1000} \\
& 3 A+7 C+10 E=1600 \\
& 5 A+9 C+14 E=2400 \\
& x=300 \mathrm{~g} \\
& y=100 \mathrm{~g} \\
& z=0 \mathrm{~g}
\end{aligned}
$$

Dear rodger
I recomend that you feed your rabbits 300 g of lena. 100 g of yum and Og of zany rabbit food, +o reach their exact daily vitamin request.

	Grade Boundary: Low Achieved
5.	For Achieved the student is required to apply systems of simultaneous equations in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations. The student has shown evidence of applying simultaneous equations methods by providing the equations for each vitamin (1), and by solving them to find a solution (2). For a more secure Achieved the student would need to indicate more accurately what is represented by each variable and interpret the solution in context.

$U \operatorname{laman} E=e$
Vitaman $C=c$
V'itama^ $A=a$

$$
\begin{array}{lll}
\text { Xena contains } & \text { A } & 2 x+4 y+5 z=1000 \\
2 a+3 c+5 e & \text { C } & 3 x+7 y+10 z=1600 \\
\text { Yun } & 3 a+7 c+9 e & E \\
4 a x+9 y+14 z=2400 \\
\text { 2any } & 5 a c+14 e & \\
& & x=300 \\
& y=100 \\
z=0
\end{array}
$$

	Grade Boundary: High Not Achieved
6.	For Achieved the student is required to apply systems of simultaneous equations in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations.
The student has provided the equations for each of the vitamins (1).	
To be awarded Achieved the student would need to correctly solve these equations.	

zany $5 \mathrm{ug} A$
14 mg E
Equation.
(1) A
(2) C

Pena	yum	zany	$=1000$
2	4	5	$=10$
3	7	10	$=1600$
5	9	14	$=2400$

Equation

$$
\begin{align*}
& \text { Equation } \tag{1}\\
& \text { (0) } 2 x+44_{y}=1000 \\
& \text { (8) } 3_{x}+y_{y}+10=16000 \\
& \text { (3) } 5_{x}+y_{y}+14=2400
\end{align*}
$$

