National Certificate of Educational Achievement TAUMATA MĀTAURANGA Ā-MOTU KUA TAEA

Exemplar for Internal Assessment Resource Mathematics Level 3

Resource title: Elaine's Equations

This exemplar supports assessment against:
Achievement Standard 91587
Apply systems of simultaneous equations in solving problems

Student and grade boundary specific exemplar
The material has been gathered from student material specific to an A or B assessment resource.

Date version published by Ministry of Education

December 2012
To support internal assessment from 2013

The task asks students to form systems of equations by using three different methods to create the third equation. Students are also asked to solve these systems of equations giving a geometric interpretation for each and writing a general statement about each solution.

	Grade Boundary: Low Excellence
1.	For Excellence the student is required to apply systems of simultaneous equations, using extended abstract thinking, in solving problems. This involves devising a strategy to investigate or solve a problem, developing a chain of logical reasoning, forming a generalisation, and using correct mathematical statements or communicating mathematical insight. The student has solved and geometrically interpreted the solutions for all three methods (1). There is evidence of extended and abstract thinking in the student's general comment on the expected solution when generating a third equation using unconnected coefficients (2). For a more secure Excellence the student would need to make a general statement about the solutions for the other two systems of equations.

$$
\begin{array}{r}
2 x+2 z-3 y+1=2 x-3 y+2 z=1 \\
y-4 z=8
\end{array}
$$

- Method One - Pin number

$$
\begin{array}{r}
3 x+2 y+8 z=7 \\
2 x-3 y+2 z=1 \\
y-4 z=8 \\
6 x+4 y+16 z=14 \\
6 x+9 y+6 z=3 \\
\hline 13 y+10 z=11
\end{array}
$$

now $13 y-52 z=104$

$$
\begin{array}{r}
-13 y+10 z=11 \\
-6 z z=93
\end{array}
$$

$$
z=-1.5
$$

So $\quad y-4 x-1.5=8$

$$
y=2
$$

and $2 x-3 \times 2+2 x-15=1$

$$
2 x-a=1
$$

$$
x=5
$$

These equations desuribe planesin $3 D$ as they have 30 variables when I solved the equations was looking for the intersections of these planed. In this nethod the new equation was formeel by using random numbus that dich't seem related to the otter equation' and in this case the solution was a point. I think this will alncuys be the scare when the third equation is made this way.

- Method 2 - multiply by 3

$\left.\begin{array}{rl}2 x-3 y+2 z & =1 \\ y-4 z & =8\end{array}\right) \times 3$ so two planes have the same $6 x-9 y+6 z=3 \quad$ equation, this means they crethe sum now $6 x-9 y+6 z=3$ on the graph. The third plane intersects | $-6 x-9 y+6 z$ | $=3$ |
| ---: | :--- |
| 0 | $=0$ | along a line witt the se uplanes giving $0=0(1)$ infinite solutions. The system is dependant.

- Method 3 - Charging constant

$$
\begin{array}{r}
2 x-3 y+2 z=1 \\
y-4 z=8 \\
2 x-3 y+2 z=6
\end{array}
$$

so $\quad 2 x-3 y+2 z=6$

$$
\frac{2 x-3 y+2 z=1}{(10=5}
$$

So two planes cueporalld ir these two planes do not in tersect at all. The Third plane intersects these two planes but as thee is no point where all 3 planes in terseet, there are no solutions and the system is inconsistent.

	Grade Boundary: High Merit
2.	For Merit the student is required to apply systems of simultaneous equations, using relational thinking, in solving problems. This involves selecting and carrying out a logical sequence of steps, connecting different concepts or representations, demonstrating understanding of concepts, and relating findings to a context or communicating thinking using appropriate mathematical statements. There is evidence of relational thinking by the student solving and geometrically interpreting the solutions for methods 1 and 3 (1). The student has correctly recognised the dependent equations in method 2, but has incorrectly interpreted these geometrically as a triangular shape (2). To reach Excellence the student would need to solve and interpret the system of equations for all methods and make a general statement about the solution set for each system of equations.

$$
\begin{gathered}
2 x+2 z=3 y+1 \text {-arighal } \\
y=4 z+8
\end{gathered}
$$

(1)

$$
\begin{aligned}
& 2 x-3 y+2 z=1 \\
& y-4 z=8 \\
& 3 x+2 y+8 z=7 \\
& \begin{array}{l}
6 x-9 y+6 z=3 \\
6 x+4 y+6 z=14
\end{array} \\
& \frac{-6 x+4 y+16 z=14}{-13 y-10 z=-11} \\
& 13 y-5 z z=104 \\
& \begin{aligned}
4-13-102 & =-11 \\
\hline-622 & =93 \\
\hline 2 & =-15
\end{aligned} \\
& z=-1,5 \\
& y-4(-1.5)=8 \\
& y--6=8 \\
& y=2 \\
& 2 x-3(2)+2(-1,5)=1 \\
& 2 x-6-3=1 \\
& \begin{array}{c}
2 x=10 \\
x=5
\end{array}
\end{aligned}
$$

(2).

$$
\begin{array}{r}
2 x-3 y+2 z=1 \times 3 \\
y-4 z=8 \\
6 x-9 y+6 z=3 \\
6 x-9 y+6 z=3 \\
\frac{6 x-9 y+6 z}{}=3 \tag{1}\\
\hline 0
\end{array}
$$

- 3 lines of solutions
- Dependant ma
(3) -2 parallel planes

For the first set of equations, it is possible to solve, resulting in a unique solution that is consistent, The plows will intersect at paints $(5,2,-1,5$.)

For the second set of equalians, attemdis: to solve will result in two $6 x-9 y+6 z=3$ equations $(0=0)$. This will resemble plumes always being cut by two planes making a (2) always beringular crape. This is dependant,
(1) $(5,2,-1,5)$ - Unique solution for the third set of equations, attempting - consistant to solve will result in two equations with same coefficients but different constants $(0=-5)$. This it inconsistent and will resemble two parallel planes both being cut by a third plane.

	Grade Boundary: Low Merit
3.	For Merit the student is required to apply systems of simultaneous equations, using relational thinking, in solving problems. This involves selecting and carrying out a logical sequence of steps, connecting different concepts or representations, demonstrating understanding of concepts, and relating findings to a context or communicating thinking using appropriate mathematical statements.
There is evidence of relational thinking by the student solving and geometrically interpreting the solutions for methods 2 and 3 (1). The student has not completely solved the system of equations for method 1 (2). For a more secure Merit the student would need to solve the system of equations for all methods.	

$$
\begin{aligned}
& 1 \cdot 2 x-3 y+2 z=1 \quad \times 2 \times 4 \\
& y-42=8 \\
& 2 \cdot 3 x+2 y+8 z=7 \\
& 3 \cdot 2 \times 2 \\
& 4 \cdot 4 x-6 y+4 z=2 \\
& 2 y-8 z=16 \\
& 6 \cdot 8 x-12 y+8 z=4 \\
& 6+2 x-5 y=10 \\
& 4+2 \cdot 4=23 \\
& 5+3 x+4 y=-3 \\
& 6 x-14 y y=5 \\
& 5 x=-2 \\
& \text { 5incosistant } z
\end{aligned}
$$

b_{i}

$$
\begin{aligned}
& 2 x-3 y+22=1 \\
& y-42=8
\end{aligned}
$$

$$
\times 3
$$

2. $y-4 z=8$
3. $6 x-9 y+62=3$

(1)

Two planes are thesane, 1 and 3. which means that there owe infinite solutions along, the line of intersection with plane 2. The planes one depencuart.
c.

$$
\begin{align*}
& \text { 1. } 2 x-3 y+2 z=1 \\
& 2 . \quad y-4 z=8 \\
& 3, \tag{1}\\
& 3 x-3 y+2 z=6 \\
& 1-3 \\
& 0
\end{align*}
$$

2, planes are parallel to each other 1 aw w 3. This causes the eqaguations to be inconsistant so there is no solution.

$$
\begin{aligned}
& \begin{array}{l|l}
12 x+2 z=3 y+1 & 2 x-3 y+2 z=1 \\
y-4 z=8
\end{array} \\
& \text { aa. } 3 x+2 y+8 z=7 \\
& \text { 35. } 6 x+6 z=9 y+3 \\
& \begin{array}{l|l}
3 . & 2 x+2 z=3 y+6
\end{array} \begin{array}{ll}
6 x-9 y+6 z=3 \\
2 x-3 y+2 z=6
\end{array}
\end{aligned}
$$

	Grade Boundary: High Achieved
4.	For Achieved the student is required to apply systems of simultaneous equations in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations.
There is evidence of applying systems of simultaneous equations by the student solving the equations for methods 1 and 2 (1) and interpreting the solutions for method 1 geometrically (2). To reach Merit the student would need to solve and provide the geometric interpretation for both methods 1 and 2.	

method 1
$\begin{array}{ll}\text { Equation 1 } & 2 x+2 z=3 y+1=2 x+2 z-3 y=1 \\ & y=4 z+8\end{array}$
Equation 2
Equation 3

$$
\begin{align*}
& \begin{array}{l}
y=4 z+8 \\
3 x+2 y+8 z=7
\end{array}=y-4 z=8 \\
& 2 x+2 z-3 y=\frac{1}{3} \times 3 \\
& x=5 \\
& y=2 \\
& z=-1.5 \tag{1}\\
& \begin{array}{l}
3 x+2 y+8 z=7 \\
6 x+4 y+16 z=14
\end{array} \\
& 6 x+4 y+16 z=14 \\
& 6 x-9 y+6 z=3 \\
& \begin{aligned}
13 y+10 z & =11 \\
y-4 z & =8
\end{aligned} \\
& y-4 z=8 \quad \times 13 \\
& \begin{array}{l}
13 y-52 z=104 \\
13 y+10 z=14
\end{array} \\
& \begin{aligned}
-13 y+10 z & =11 \\
-62 z & =93
\end{aligned} \\
& \begin{aligned}
-62 z & =93 \\
z & =-1.5
\end{aligned} \\
& z=-1.5 \\
& y-4 z=8 \\
& y-4(-1.5)=8 \\
& y+6=8 \\
& y=2 \\
& 2 x+2 z=3 y+1 \\
& 2 x+2(-1.5)=3(2)+1 \\
& 2 x-3=6+1 \\
& 2 x=10 \\
& x=5
\end{align*}
$$

In method 1 as there is one set answer for x, y, z graphicly the three lines have one point where they

method 2
Equation $\frac{1}{2} \quad 2 x+2 z=3 y+1=2 x+2 z-3 y=1$
Equation $2 \quad y=4 z+8$
Equation $3 \quad 6 x+6 z=9 y+3=6 x+6 z-9 y=3$

$$
\begin{array}{r}
2 x+2 z=3 y+1 \times 3 \\
6 x+6 z=9 y+3 \\
-6 x+6 z-9 y=3 \\
6 x+6 z-9 y=3 \tag{1}\\
0=0
\end{array}
$$

Infinite solutions

	Grade Boundary: Low Achieved
5.	For Achieved the student is required to apply systems of simultaneous equations in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations.
There is evidence of applying simultaneous equations methods by the student solving and geometrically interpreting the system of equations for method 1. For a more secure Achieved the student would need to solve or provide a geometric interpretation for another system of equations.	

Method one!

	Grade Boundary: High Not Achieved
6.	For Achieved the student is required to apply systems of simultaneous equations in solving problems. This involves selecting and using methods, demonstrating knowledge of concepts and terms and communicating using appropriate representations.
The student has solved the system of equations for method 1.	
To reach Achieved the student would need to provide a geometrical interpretation of this solution.	

$$
\begin{aligned}
2 x y+2 z & =3 y+1 \\
y & =4 z+8 \\
3 x+2 y+8 z & =7
\end{aligned}
$$

$$
\begin{equation*}
2 x_{0}-3 y+2 z-1=0 \tag{1}
\end{equation*}
$$

$$
y-4 z-8=0
$$

$$
3 x+2 y+8 z-7=0
$$

$$
\text { (1) } \times(6,-12 x-18 . y+12 z=6=0-(4)
$$

$$
\text { (3) } \times 4, \quad 2 x+8 y+32 z-28=0-(5)
$$

$$
(4)-(5),-26 y-20 z+22=0-(6)
$$

$$
(2) \times 5,5 y-20 z-40=0-(7)
$$

(6) $-(7)$,

$$
-3 y+62=0
$$

$$
y=2
$$

Sub
(2) $-4 z-8=0$
(2)

$$
\begin{aligned}
-4 z & =8 \\
-4 z & =6.1 \\
z & =-1.5
\end{aligned}
$$

sub $y=2, z=-1.5$ to (5)

$$
\begin{aligned}
& 12 x+8(2)+32(-1,5)-25=0 \\
& 12 x+16-48-28=0 \\
& 12 x-60<0 \\
& 12 x=60
\end{aligned} \quad \therefore y=2 \quad z=-1.5 \quad x=5
$$

$$
x=5
$$

